

Inferring Reading Comprehension from Eye Movements

David R. Reich^{1,2}, Paul Prasse¹, Chiara Tschirner^{1,2}, Patrick Haller², Maja Stegenwallner-Schütz¹, Frank Goldhammer^{3,4}, and Lena A. Jäger^{1,2}

¹University of Potsdam; ²University of Zurich; ³DIPF | Leibniz Institute for Research and Information in Education; ⁴Centre for International Student Assessment (ZIB)

- Predict reading comprehension from eye movements on a given text.
- **Challenge:** Generalize to readers not seen during training

Research Question — Problem Settings

Given scanpath S, recorded while subject j reads text T_i , infer task-specific binary label y.

 $f(...Hello, my name is Ada!...) \rightarrow y_{i,i}$

Goal: Find a model f that can infer label y from scanpath S and Text T_i .

This work was partially funded by the German Federal Ministry of **Education** and Research under grant 01|\$20043.

Data: Publicly available data set [1]

- Four text passages from the SAT, 95 readers
- Eye movement data and scores on respective comprehension questions

Investigated tasks:

- Text Comprehension: readers' text specific comprehension score (binarized)
- **General Reading Comprehension: average** of a reader's comprehension scores on all four SAT text passages (binarized)
- Readers' self-reported **Text Difficulty**
- Native Speaker: whether the reader is a native speaker of English

Evaluation settings – 3 different cross-validation settings:

- New Page: hold out individual pages.
- New Book: hold out entire books.
- New Reader: hold out subjects.

Model architecture [6] Comprehension Score Dense (32) Dense (20) Dense (20) Dense (20) Dense (50) Dense (50) Dense (50) BiLSTM (25) BiLSTM (25) BiLSTM (25) **Dense** (32) BiLSTM (25) BiLSTM (25) BiLSTM (25) global scanpath features: Embedding **Embedding** aggregated word and sentence level features fixation sequence: represented as x, y, fixation duration, sequence indicating binary sequence indicating pupil size simplified PoS-tags content words Hello, my narne is Ada!

Global Scanpath Features

Reading Measures

- Vertical coordinate

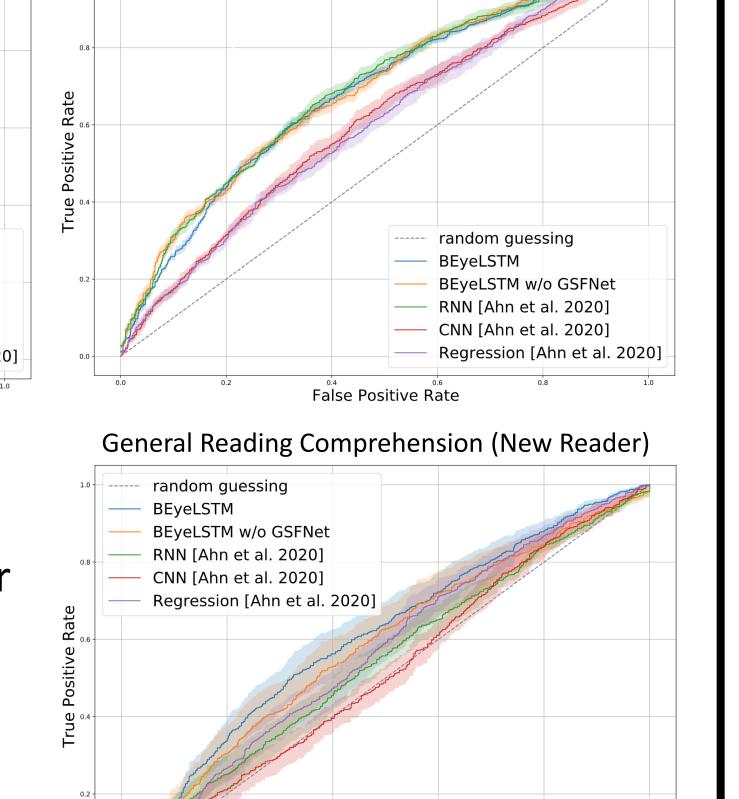
Fixation Features

- Fixation duration
- Pupil size on fixation
- Horizontal coordinate
 First Fixation Duration (FF)
 - Total Fixation Duration (TF)
 - Incoming Regression Count
 - Outgoing Progressive / Regressive Saccade Count
- Averaged Horizontal / Vertical **Fixation Location**
 - Words in Fixed Context on FF / TF
 - Syntactic Clusters on FF /TF
 - Information Clusters on FF / TF

[2, 3, 4, 5, 6, 7]

- Word Length
- Lexicalized Surprisal
- PoS-tag / Simplified PoS-tag

Linguistic Features


- is_content_word
- Named Entity Type
- Right / Left dependencies count

- Results

	Model	New Page	New Book	New Reader
Gen. Reading Comprehension	BEyeLSTM	0.68 ± 0.006 *	$0.648 \pm 0.023^*$	$0.608 \pm 0.037^*$
	BEyeLSTM w/o GSFNet	$0.687 \pm 0.007^*$	$0.683 \pm 0.009^*$	0.581 ± 0.045
	RNN [Ahn et al. 2020]	$0.69 \pm 0.009^*$	$0.677 \pm 0.008^*$	0.542 ± 0.028
	CNN [Ahn et al. 2020]	$0.605 \pm 0.015^*$ †	$0.582 \pm 0.013^* \dagger$	0.513 ± 0.03
	Regression [Ahn et al. 2020]	0.599 ± 0.016 *†	$0.59 \pm 0.007^*$ †	0.564 ± 0.031
Text Comprehension	BEyeLSTM	$0.596 \pm 0.012^*$	0.504 ± 0.015	$0.542 \pm 0.015^*$
	BEyeLSTM w/o GSFNet	$0.597 \pm 0.013^*$	0.522 ± 0.013	0.521 ± 0.029
	RNN [Ahn et al. 2020]	$0.571 \pm 0.01^*$	0.507 ± 0.01	0.514 ± 0.024
	CNN [Ahn et al. 2020]	0.538 ± 0.006 *†	0.493 ± 0.009	$0.485 \pm 0.016 \dagger$
	Regression [Ahn et al. 2020]	$0.539 \pm 0.007^*$ †	0.492 ± 0.013	0.532 ± 0.016
Text Difficulty	BEyeLSTM	$0.746 \pm 0.01^*$	0.516 ± 0.011	$0.71 \pm 0.017^*$
	BEyeLSTM w/o GSFNet	$0.652 \pm 0.008^{*\dagger}$	0.545 ± 0.023	$0.595 \pm 0.014^*\dagger$
	RNN [Ahn et al. 2020]	$0.567 \pm 0.013^{*\dagger}$	0.51 ± 0.02	$0.553 \pm 0.032 \dagger$
	CNN [Ahn et al. 2020]	$0.53 \pm 0.014 \dagger$	0.523 ± 0.017	$0.511 \pm 0.016 \dagger$
	Regression [Ahn et al. 2020]	0.564 ± 0.011 *†	$0.523 \pm 0.004^*$	$0.516 \pm 0.014 \dagger$
Native Speaker	BEyeLSTM	$0.737 \pm 0.011^*$	$0.7 \pm 0.017^*$	$0.67 \pm 0.025^*$
	BEyeLSTM w/o GSFNet	$0.744 \pm 0.01^*$	$0.696 \pm 0.015^*$	$0.612 \pm 0.045^*$
	RNN [Ahn et al. 2020]	$0.723 \pm 0.013^*$	$0.69 \pm 0.014^*$	$0.581 \pm 0.015^*$ †
	CNN [Ahn et al. 2020]	$0.65 \pm 0.009*\dagger$	$0.628 \pm 0.007^*$ †	$0.574 \pm 0.022^*$ †
	Regression [Ahn et al. 2020]	$0.667 \pm 0.006 * \dagger$	$0.664 \pm 0.01^*$	$0.599 \pm 0.033^*$

General Reading Comprehension (New Page)

 BEyeLSTM outperforms state-of-the-art models for each task in the New Reader setting.

General Reading Comprehension (New Book)

Discussion

- BEyeLSTM is the first model to infer reading comprehension for new readers that are not in the training data
- The sequential information encoded in scanpaths is highly informative with respect to reading comprehension
- Classification into skilled/unskilled is easier than the prediction of text specific comprehension accuracy
- Future research: Challenge remains to generalize to texts and readers not seen during training

References

[1] Ahn et al. *ETRA* 2020 [2] Berzak et al. NAACL 2018 [3] Hale NAACL 2001 [4] Levy Cognition 2008 [5] Martinez-Gomez & Aizawa IUI 2014 [6] Reich et al. ETRA 2022 [7] Shiferaw et al. *Drug Alcohol Depen.* 2019